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Nonequilibrium statistical mechanics via density fluctuation theory predicts relations between the bulk and
shear viscosity, thermal conductivity, and self-diffusion coefficient of a fluid. In this Feature Article, we
discuss such relations holding for fluids over wide ranges of density and temperature experimentally studied
in the laboratory. It is discussed how such relations can be used to successfully compute the density and
temperature dependence on the basis of intermolecular interaction potential models with the help of the modified
free volume theory and the generic van der Waals equation of state once the parameters in them are determined
at a low density or at a subcritical temperature. Although some approximations have been made to derive
them, they represent a reliable molecular theory of transport coefficients over the entire density and temperature
ranges of fluidssnamely, gases and liquidssa theory hitherto unavailable in the kinetic theory of liquids and
dense gases.

1. Introduction

Linear transport coefficients, such as shear viscosity, bulk
viscosity, thermal conductivity, and diffusion coefficients, are
an important class of thermophysical properties of matter, which
are indispensable for understanding the structure of matter and
its thermophysical behavior, both near and far removed from
equilibrium, and in engineering design of materials processing.
A number of formal theories1-7 have been developed for that
purpose in nonequilibrium statistical mechanics and kinetic
theory of gases and liquids in the past. However, in the dense
gas and liquid density regimes these theories have not yielded
the density and temperature dependence of the transport
coefficients as was initially expected. The primary reason is
that the desired results require accurate solutions of many-
particle dynamics, but such solutions are not possible to obtain
in closed form. For this reason, only the linear response theory,
which is in a form more readily amenable to computer
simulations, has been studied by applying molecular dynamics
simulation (MDS) methods. Computer simulation methods,

however, have their own limitations. In addition to the afore-
mentioned problems, the plethora of thermophysical properties
and, in particular, of transport coefficients tends to make their
molecular understanding appear even more complex and daunt-
ing. Therefore the complex and difficult task would be made
less daunting if there were some rigorous or sufficiently accurate
relations between the various transport coefficients. One typical
example for such relations is the Stokes-Einstein (SE) relation8,9

that relates the (tracer) diffusion coefficient to the viscosity of
the medium. However, the SE relation was derived by using
methods of macroscopic physics and for particles of macroscopic
size suspended in a continuous medium. If some relations akin
to the SE relation can be derived for particles of molecular size
by means of nonequilibrium statistical mechanics or the kinetic
theory of dense gases and liquids, it will be extremely helpful
for us to understand the thermophysical behavior of transport
properties. In fact, such relations would even make it possible
to examine the properties of transport coefficients semiempiri-
cally by using the information provided by one transport
coefficient to study another with regard to the density and
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temperature dependence. For transport processes in gases the
Eucken relation10 provides a typical example of such a relation.

In a recent series11-22 of articles on transport coefficients of
liquids, simple and complex, a nonequilibrium statistical me-
chanical theory, termed the density fluctuation theory, has been
developed by the present author and his collaborator. The density
fluctuation theory gives rise to relations between the potential
energy part of transport coefficients and the self-diffusion
coefficient of the fluid of interest that are reminiscent of the
SE relation but with the coefficient factor quite different from
that of the SE relation. Such relations have been used to
successfully analyze23-27 experimental data on the transport
coefficients of simple as well as complex liquids, such as
nitrogen and carbon dioxide, on the basis of an intermolecular
potential model. In this Feature Article we would like to discuss
such relations between transport coefficients of dense gases and
liquids, which have been derived by means of nonequilibrium
statistical mechanics and successfully validated through exten-
sive comparison with experimental data with regard to their
density and temperature dependence. Such relations provide us
with a much sought molecular (statistical mechanical) theory
of transport coefficients and their thermophysical behavior.

2. Eucken Relation and Ratio for Gases

2.1. Eucken Relation. The earliest example for the relation
between transport coefficients, other than the SE relation, ap-
pears to be that of Eucken, who suggested on empirical grounds
that the ratio of the thermal conductivity to the viscosity of a
noble gas is a constant.10 It is known as the Eucken relation10,28

whereλ0 andη0 are the thermal conductivity and the viscosity
of the gas, respectively, andCV is the specific heat at constant
volume. The factorfE is known as the Eucken factor and has
the value5/2 for noble gases. This relation is well verified
experimentally and the kinetic theory based on the Chapman-
Enskog method28 supports it in reasonable accuracy. For
polyatomic gases Eucken10 suggested a decomposition of the
factor fE into translational and internal contributionsfE )
fE
tr(CV

tr/CV) + fE
int(CV

int/CV), whereCV
tr and CV

int were the transla-
tional and internal specific heat, respectively, andfE

tr and fE
int

were, respectively, suggested to be5/2 and 1. Such values turned
out to have only a limited range of applicability, and later
authors made a number of improvements on the Eucken factor
for polyatomic gases. Ubbelohde,29 Hirschfelder,30 and Mason
and Monchick31,32 were all associated with the improvements.
We will find that this relation can be incorporated into a
generalized relation that also holds in the liquid density regime.

Closely related to the Eucken relation is the relation between
the thermal conductivity and the self-diffusion coefficientD0

≡ D11
0 , which may be written, in the Chapman-Enskog first

approximation,28 as

and similarly for the shear viscosity

In this expression,F ) mnwith n denoting the number density
andW1

(l)(r) given by28

whereø represents the classical scattering angle expressed by33

In this expression for classical scattering angle,V(R) is the
intermolecular potential, which may be the Lennard-Jones
potential

with the classical turning pointr0 defined by

andb is the impact parameter. The integralW1
(l)(r) is comput-

able once the scattering angle is known as a function of the
impact parameterb and the relative speedg for the given
intermolecular potential model. For hard spheres

whereas for an inverse power law potentialV(R) ) κ12/Rν

it follows from eqs 4 and 5 thatW1
(l)(r) ) Al(ν)Γ(r + 2 -

2/(ν - 1)) with Al(ν) ) ∫0
∞(1 - cosl ø)V dV.
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The existence of relations 2 and 3 suggests that the time and
spatial scales of thermal conduction and momentum transfer
accompanying viscous flow in gases are set by diffusion of
molecules, and that their scales are directly proportional to those
of self-diffusion. For monatomic gases the Eucken relation may
be regarded as a direct consequence of relations 2 and 3. It
should be noted that, becauseFD0 is independent of density,
the gas phase thermal conductivity and shear viscosity,λ0 and
η0, are also independent of density, as is well-known experi-
mentally in the normal density regime of gases.

For polyatomic molecules the kinetic theory results for the
translational motion part of the transport coefficients may be
written as31

where fη and fλ are correction factors resulting from higher-
order kinetic theory approximations, which differ from unity
by at most a few percent. It should be noted that the thermal
conductivity λ0 in eq 7 is for the translational part only.
Similarly, the self-diffusion coefficientD11 is given by the
formula

wherefD has a meaning similar tofη andfλ and is close to unity.
The symbols〈W(2,2)* 〉 etc. denote the collision bracket integrals
averaged over rotational angles of a polar molecule:

According to Kihara’s second approximation31,34

with the definitions〈A* 〉 ) 〈Ω(2,2)* 〉/〈Ω(1,1)* 〉, 〈C* 〉 ) 〈Ω(1,2)* 〉/
〈Ω(1,1)* 〉, and〈E* 〉 ) 〈Ω(2,3)* 〉/〈Ω(2,2)* 〉. The Kihara approxima-
tion formulas are known to be fairly accurate. The relations
involving the averaged collision bracket integrals are applicable
to gases of polar molecules although they appear to be formulas
for simple gases.

The relation betweenη0 and D0 ≡ D11 for polar gases is
therefore given by

where the constantC differs from the constantc in relation 3
for monatomic gases. Apart from the coefficient factors, relations
3 and 14 are the same with regard to the proportionality ofη0

to D0, indicating that the momentum transfer associated with
viscous phenomena is directly proportional to the mass transfer
accompanying diffusion, and hence the time and spatial scales
of the two transfer processes are directly related. This direct
proportionality relation no longer holds in the liquid density
regime and beyond, as will be seen.

2.2. Eucken Ratio.For want of appropriate terminology the
ratio of bulk viscosity to shear viscosity will be referred to as the
Eucken ratio. Because it was Eucken who considered the rela-
tion of shear viscosity and thermal conductivity for gases, the ter-
minology seems appropriate. The first-order Chapman-Enskog
theory predicts that monatomic gases have a vanishing bulk
viscosity, but that is not the case for polyatomic gases35 because
of the presence of internal degrees of freedom into which the
translational energy can be transferred, and vice versa. The bulk
viscosity of a polyatomic gas is related to the shear viscosity,
and the ratio of the bulk viscosityηb

0 to the shear viscosityη0,

may be a constant but is generally dependent on temperature.
Such a relation can be practically rather useful because bulk
viscosities are difficult to measure precisely, the only practical
method being the method36-38 of ultrasonic absorption and
dispersion by the gas, but this method involves measuring a
rather minor contribution attributable to the bulk viscosity of
the entire ultrasonic absorption and dispersion spectra.39 It is
worth noting that Assael et al.40 suggested a temperature
independent form forfr depending on molecular parameters only:

whereτ ) 4IR/mσR with σR denoting the diameter of the rough
sphere andIR its moment of inertia resulting from the internal
distribution of mass within the sphere. For carbon dioxide the
value ofτ is estimated to be 0.048.

3. Relations for Transport Processes in Liquids

The relations of transport coefficients presented for processes
in gases do not apply to those in liquids because momentum
and energy transfers in liquids are accomplished in a fundamen-
tally different manner than in gases. Because of its attractiveness
the applicability41,42of the SE relation to particles of a molecular
size has been tested by using experimental data on the viscosity
and diffusion coefficient. However, such scrutinies have been
inconclusive because in some cases the SE relation gives
qualitatively reasonable correlations with experimental observa-
tions, whereas for some others it fails noticeably. A number of
authors43 have made statistical mechanical derivations of the
SE relation, but after rather involved calculations, which tend
to obscure the underlying physical process. Such relations in
the liquid density regime therefore need appropriate fresh
derivations by an entirely different route in the kinetic theory
or nonequilibrium statistical mechanics of transport processes
in liquids. We have been able to achieve the desired aim more
definitively and quantitatively by means of the density fluctua-
tion theory11-14,16,22and successfully validate23-25,27the relations
with the help of experimental and MDS data.
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3.1. Stokes-Einstein Relation. Despite its limitations the
SE relation not only is frequently used but also contains valuable
insights. Therefore it is worthwhile to examine how it is derived.

According to Stokes,8 the kinetic (drag) forceFk acting on a
sphere by the medium in which the sphere is immersed and
moving at velocityVs makes it possible to calculate the force if
the appropriate hydrodynamic equations are solved.44 It is found
that the forceFk is given byFk ) -aησVs, whereσ is the radius
of the sphere,a ) 6π for the stick boundary condition44 (the
medium sticks at the surface of the sphere in this boundary
condition) anda ) 4π for the slip boundary condition44 (the
medium slips at the surface in this boundary condition), andη
is the viscosity of the medium. Therefore the force exerted by
the sphere on the mediumFs is given byFs ) - Fk ) aησVs.

In his theory of Brownian motion Einstein9 considers a dilute
suspension ofν macroscopic (colloidal) particles, which has
an osmotic pressurep ) νkBT. Einstein regards the dynamic
equilibrium as being brought about by two processes: (1) a
movement of the suspended particle under the influence of the
force Fs. (2) A process of diffusion arising from the irregular
Brownian motion of the particles produced by the thermal
agitation of molecules of the medium. By invoking the
thermodynamic equilibrium condition, he obtains the dynamic
(i.e., thermodynamic) equilibrium conditionνFs ) ∂p/∂x )
kBT∂ν/∂x, if the particles are assumed to move in the direction
of the x coordinate in the appropriately chosen coordinate
system. The forces acting onν particles generate a fluxνVs )
-νFs/aησ, whereas the diffusion of the suspended particles
produces the mass fluxνVs ) -D∂ν/∂x in accordance with
Fick’s law.45,46 Balancing the opposing forces and making use
of the dynamic equilibrium condition he finds the SE relation

The salient feature of the derivation of the SE relation is the
use of (1) the Navier-Stokes equations44 to calculate the force
on particles suspended in the medium and (2) Fick’s law45,46of
diffusion for the suspended particles, both of which are
macroscopic equations. The transport coefficients are, of course,
assumed to be known. Therefore there is no molecular theory
provision for them in the SE relation. Nevertheless, Einstein
additionally develops a stochastic theory of diffusion, which
yields his well-known mean square displacement formula.
Another important point to note is thatD is evidently the tracer
diffusion coefficient according to Einstein’s derivation made
by using the osmotic pressure of the suspension of Brownian
particles. We will see that relations akin to the SE relation can
be obtained for the potential energy part of transport coefficients
in the liquid density regime by means of statistical mechanics,
but they are not exactly the SE relation.

3.2. Density Fluctuation Theory and Relations between
Transport Coefficients. The SE-like relations mentioned can
be derived by means of nonequilibrium statistical mechanics,
but by an approach radically different from the traditional route.
The approach taken is the density fluctuation theory, and it is
based on the following observation. As the density increases to
the liquid density, voids created in the liquid play an increasingly
important role, giving rise to strong density fluctuations over
intermolecular distances. The momentum and energy transfer
accompanying transport processes in liquids therefore become
strongly dependent on density fluctuations, which are also
modulated by diffusion of molecules over intermolecular

distances. Consequently, the time and spatial scales of momen-
tum and energy transfer attendant on the transport processes in
liquids are set by the density fluctuations and diffusion of
particles. The density fluctuation theory explicitly takes into
account diffusion of particles over the range of intermolecular
distance for the derivation of relations of transport coefficients
mentioned. In the following, we describe how this aim can be
achieved, but because of the space limitation, only the most
salient examples for validation of the results will be given. It is
the principal aim of this Feature Article.

3.2.1. Relation of Shear Viscosity to Self-Diffusion Coef-
ficient: Simple Fluids Shear Viscosity.To obtain the statistical
mechanical formula for shear viscosity, it is necessary to derive
the constitutive relation for the shear stress in the fluid subjected
to shearing externally applied. In principle, such a relation
should be derived either from an appropriate kinetic equation,6,7

as has been for relation 3 or 14, or by means of nonequilibrium
statistical mechanics. In the liquid density regime the desired
constitutive relation is obtained more readily in a more useful
form if the shear stress tensor is calculated by using its statistical
mechanical expression and taking density fluctuations and the
structure of the liquid into account. The density fluctuation
theory11-14,16,22of transport processes developed recently enables
us to achieve the desired aim. Unlike the Chapman-Enskog
method applied to the dense fluid kinetic equation (e.g., a
generalized Boltzmann equation6,7) the density fluctuation theory
takes into account the structure of liquids through density
fluctuations, which give rise to density variation over intermo-
lecular distances in the liquid. The density distribution function
therefore may be expanded as a series in the density gradient.
Eliminating the density gradient with the help of hydrodynamic
equations and the constitutive equation47 for the fluid velocity,
it is possible to derive the Newtonian law of viscosity for the
shear stress tensor, from which the statistical mechanical formula
for the shear viscosity of the liquid can be derived. The formula
so derived consists of a kinetic energy (dilute gas) part made
up of relation 3 and a potential energy part similar to the SE
relation. It has the form11,13,47

whereω(n,T), defined by

contains the information on intermolecular interactions and the
structure of the fluid. In this expressionV′(r) ) dV(r)/dr; g(r,n,T)
is the equilibrium pair correlation function;θ(x) is the Heaviside
step functionθ(x) ) 1 for x > 0 and 0 forx < 0; rmax is the
range of the intermolecular force;ê is the range of density
fluctuations in the liquid;c is the constant factor appearing in
eq 3; D0 is the self-diffusion coefficient of the gas; andD is
the self-diffusion coefficient of the pure liquid. The value ofc,
which is defined by eq 3, is approximately equal to unity. The
density fluctuation rangeê, which, mathematically from the
viewpoint of eq 19, may be regarded as the cutoff distance of
the correlation range ofg(r), is not well defined but has a
distributionP(ê). This distribution is believed to be a measure
of random distribution of voids around radial positionr from

η )
kBT

aσD
(17)

η ) cFD0 + F2

6D
ω(n,T) (18)

ω(n, T) ) 2π
15∫0

rmaxdr r 5V′(r) g(r,n,T) θ(ê-r) (19)
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the point of attention in the liquid. It is assumed to be, as is
usual for random distributions, a stretched exponential48

whereú̂(F,T) andγ are parameters to be chosen appropriatelys
it turns outγ does not explicitly appear in the formulas for the
transport coefficients. Averaging formula 18 over the distribution
P(ê) yields the formula for the observed shear viscosity, which
will also be denoted by the same symbol23,24,47η, namely,

where

The density fluctuation rangeê should evidently depend onT.
If T J Tc (Tc ) critical temperature), the density fluctuation
rangeê should be roughly of the same order of magnitude as
the range of the intermolecular force or larger, that is,ê g rmax.
In that case, becauseθ(ê-r) ) 1 in eq 19, it follows that

in eq 22. On the other hand, because the particles are more
closely packed ifT < Tc than if T > Tc and hence the density
fluctuation range should be less thanrmax, the functionú̂(F,T)
is not equal to zero but should depend onF. It therefore may
be expanded in a series ofF:

where the coefficientsú0, ú1, ú2, etc. are parameters independent
of T.

Whereas the first term on the right of eq 22 represents the
dilute gas behavior ofη, the second term represents the potential
energy part ofη and is reminiscent of the SE relation 17. The
coefficients of the potential energy part ofη, however, are quite
different from those in the SE relation. Numerical comparisons
show that these two relations have only a limited range of
coincidence.11,13,47In any case, eq 22 is a generalization of eq
3 to the liquid density regime, which is a statistical mechanics-
based relation between the shear viscosity and self-diffusion
coefficient.

In the low-density regime the kinetic energy part ofη is
dominant whereas in the high (liquid) density regime the
potential energy part becomes dominant. Thus the self-diffusion
coefficient dependence and thus the density dependence smoothly
cross over from one form to another as the density varies.
Therefore eq 22 may be regarded as an interpolation formula
with respect to the dependence on the self-diffusion coefficient
of the fluid. It is a robust relation that accurately relates the
two transport coefficients over wide ranges of temperature and
density for simple (monatomic) fluids, as has been shown in
the literature.11,23,47 If the gas-phase self-diffusion coefficient
D0 is computed by means of the Chapman-Enskog theory,28 if
the self-diffusion coefficientD is computed by using the
modified free volume (MFV) theory formula16,18-21 26 for
diffusion given below, and ifg(r,n,T) is computed by a Monte

Carlo (MC) method, then the shear viscosity can yield temper-
ature and density dependence in excellent agreement with
experiment over the entire ranges of temperature and density
experimentally examined. For this purpose, the exponentú̂(F),
of course, must be empirically determined at an isotherm in
the subcritical regime. In the supercritical regime of temperature
such a procedure is unnecessary, and the formula becomes free
from ú̂ becauseú̂(F) ) 0 in the supercritical regime of
temperature.

In connection with this manner of takingú(F,T), it should be
remarked that the two different forms forú̂(F,T) taken in the
supercritical and subcritical regimes of temperature do not have
such a sharp demarcation point atT ) Tc, and it may be more
useful in practice to continue to use the expansion in eq 25,
especially in the supercritical regime near the critical point. This
would be tantamount to making the coefficientsúi temperature-
dependent. The present mode of expressingú(F,T) has been
taken to make the theory free from the parameterú in the
supercritical regime.

The relation for the shear viscosity, eq 22, has been
extensively tested semiempirically11,47and also with the help23,26,47

of the MFV theory and the GvdW equation of statesboth of
which make the theory molecular. For lack of space we can
only present a couple of typical examples for argon and methane,
which is usually treated49 as a simple (spherical) liquid. In Figure
1, the shear viscosity of argon at temperaturesT* ) 125 and
139 K is plotted against mass densityF and compared with
experimental data. For the comparisonú̂ ) 0.3890+ 0.5180F
+ 0.2578F2 was taken in the subcritical regime of temperature.
For most thermophysical properties, methane has been success-
fully treated as a spherical molecule in the literature.49 Therefore,
by following tradition the shear viscosity of liquid methane has
been examined by treating liquid methane as a simple liquid.
Figure 2 is an example in which theoretical values ofη are
compared with experimental values for methane at various
temperatures withú̂ represented byú̂ ) 0.4992+ 2.655F +
0.33278F2 in the subcritical temperature regime. We emphasize
that ú̂ ) 0 in the supercritical regime. Figures 1 and 2 indicate
the reliability and utility of relation 22.

Another type of relation between transport coefficients is
that6,26,47between the non-Newtonian and Newtonian viscosities,
which holds far removed from equilibrium in the high shear
regime. This relation enables computation of the non-Newtonian

P(ê) ) γú̂êγ-1

rγ
exp[-ú̂(F,T)(êr )γ] (20)

∫0

∞
dê P(ê) ) 1 (21)

η ) cFD0 + F2

6D
$(n,T) exp[-ú̂(F,T)] (22)

$(n,T) ) 2π
15∫0

rmaxdr r 5V′(r) g(r,n,T) (23)

ú̂(F,T) ) 0 for T J Tc (24)

ú̂(F,T) ) ú0 + ú1F + ú2F
2 + ‚‚‚ (25)

Figure 1. η vs F. The symbols are× (theory),O (exp) atT ) 107 K;
+ (theory),0 (exp) atT ) 125 K; * (theory),) (exp) atT ) 139 K;
andf (theory),4 (exp) atT ) 143 K. Reproduced with permission
from R. Laghaei, A. Eskandari Nasrabad, B. C. Eu (J. Phys. Chem. B
2005, 109, 5873). Copyright 2005 American Chemical Society.
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viscosity, given the Newtonian viscosity of a fluid. Although
quite relevant and useful in the study of rheology,6,50discussion
of such a relation will be deferred to ref 26.

The self-diffusion coefficientD in eq 22 can be determined
by performing computer simulations for the mean square
displacement of the particles. It can be also computed if the
MFV theory for diffusion is utilized, together with the generic
van der Waals (GvdW) equation of state,47,51,52which can be
computed withg(r,n,T). According to the MFV theory,16,18-21

D is given by

where the preexponential factor is the self-diffusion coefficient
of hard spheres,28 ϑ is the free volume overlap parameter,Vf is
the mean free volume, andV* is the minimum free volume
activating diffusion. The productV0 ≡ ϑV* defines the critical
free volume facilitating diffusion of particles. It may be
calculated by a suitable model for the minimum size of voids,
activating diffusion in the liquid.

In most free volume theories in the literature53-56 Vf is treated
as an empirical parameter, but in the MFV theory it can be given
a precise statistical mechanical representation. According to the
GvdW equation of state47,51,52the statistical mechanical expres-
sion for Vf is given by

in terms of the pair correlation function, which contains the
information on the structure of the liquid and the intermolecular
force. Hereσ (e.g., the diameter of the hard sphere) is the point
at which V(r) ) 0 andg(r,n,T) can be calculated by an MC
simulation method. The self-diffusion coefficient of the MFV
theory presented earlier has been rather thoroughly examined
in comparison16,18-21,23-25 with experimental and MDS data.
The numerals in Figures 3 and 4 denote different isotherms: 1
) 140; 2) 130; 3) 120; 4) 110; 5) 100; 6) 90; 7) 145;
8 ) 130; 9) 110; 10) 95; 11) 95; 12) 95 K. In Figure 3,
the MFV theory results of the density dependence ofD at
various temperatures are compared in excellent agreement with

experimental57 and MDS58 data. In Figure 4, the MFV theory
results of the temperature dependence ofD at various densities
are compared with both experimental57 and MDS data.58

Because the values ofD obtained from the MFV theory are
reliable, we may also expect that the shear viscosity values will
be equally reliable: as a matter of fact, this expectation has
already been fulfilled, as has been shown in Figures 1 and 2.
Figure 4 shows that the theory and the MDS data agree well
throughout the density range considered. The experimental point
(×) significantly deviates from both the theory and the MDS
data at the high-temperature regime. It might be possible that
the experiment was not as accurate in the high-temperature
regime as at intermediate temperatures.

Therefore with the help of the MFV theory and the GvdW
equation of state the Newtonian shear viscosity of monatomic
liquids can be calculated in terms ofD0 andg(r,n,T) as a function
of n and T once the intermolecular interaction potential is
specified. Relation 22, eq 26, and eq 27 constitute a robust
molecular theory of shear viscosity.

3.2.2. Relation of Bulk Viscosity to Self-Diffusion Coef-
ficient: Simple Fluids.The bulk viscosity is related to the excess

Figure 2. η vs F for liquid methane. The symbols are * (theory),O
(experiment) atT ) 120 K; b (theory),] (experiment) atT ) 140K;
+ (theory),4 (experiment) atT ) 180 K. Reproduced with permission
from R. Laghaei, A. Eskandari Nasrabad, B. C. Eu (J. Phys. Chem. B
2005, 109, 5873). Copyright 2005 American Chemical Society.

D ) 1.019
3

8Fσ2xkBT

πm
exp(- ϑV*

Vf
) (26)

Vf ) V[1 - 2πn
3kBT∫0

σ
dr r 3V′(r) g(r,n,T)]-1

(27)

Figure 3. D vs F at various temperatures.b, theory;0, MDS data;
×, experiment of Naghizadeh and Rice.57 Reproduced with permission
from R. Laghaei, A. Eskandari Nasrabad, B. C. Eu (J. Phys. Chem. B
2005, 109, 5873). Copyright 2005 American Chemical Society.

Figure 4. D vs T for argon at various isochores.b, O, MFV theory:
0, MDS data:×, experimental data. Reproduced with permission from
R. Laghaei, A. Eskandari Nasrabad, B. C. Eu (J. Phys. Chem. B2005,
109, 5873). Copyright 2005 American Chemical Society.
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normal stress, which, if the fluid is compressed in the direction
of the z axis, may be written as∆ ) 2/3(Pxx - Pzz), wherePxx

and Pzz are respectively the tangential and longitudinal com-
ponents of the pressure (stress) tensorP in the fluid. In contrast
to the bulk viscosity, the shear viscosity is related to the
offdiagonal elementPxy of the pressure tensor. Therefore, being
related to the sameP, both bulk and shear viscosities share the
same physical mechanism for momentum transfer, which is
responsible for viscous transport phenomena. This means that
the basic ideas of the density fluctuation theory for the shear
viscosity can be applied to the bulk viscosity12,14of simple fluids.
However, because the bulk viscosityηb of dilute monatomic
gases is equal to zero at the first-order Chapman-Enskog theory
level, it consists entirely of the potential energy contribution47

Therefore, by making use of the shear viscosity formula 22,
the bulk viscosityηb can be related to shear viscosityη by

This relation is a generalization of eq 15 to simple liquids. The
bulk viscosity is generally deduced by measuring ultrasonic
absorption and dispersion36-38 by the fluid, but because the
contribution of the bulk viscosity to the absorption and
dispersion spectra is relatively small compared to the shear
viscosity contribution, the measurement of bulk viscosity entails
a sizable uncertainty. Relation 29 therefore can be useful for
avoiding the experimental uncertainty in measuringηb because
shear viscosity can be experimentally determined in high
precision.

Experiment59-62 shows that the ratioηb/η is in the range
0.85-0.56. If the second term on the right of eq 29 is ignored,
the ratio is approximately 0.67. Therefore relation 29 can be
used to estimate the bulk viscosity with reasonable accuracy
from information on the shear viscosity and the Chapman-
Enskog prediction for the gas self-diffusion coefficientD0.

Formula 28 has been shown to give good values,12,47

qualitatively and quantitatively, for the bulk viscosity of simple
fluids, such as argon, krypton, and xenon. Because the coef-
ficient of the Eucken ratio 29 was also found to be reasonable
and the behavior of the shear viscosity is in good agreement
with experiment, as noted earlier, relation 29 is expected to,
and does, yield a correct bulk viscosity; the space limitation
compels us to omit graphical presentation forηb. Validation of
relation 29 is available for monatomic fluids in ref 12.

3.2.3. Relation of Thermal ConductiVity to Self-Diffusion
Coefficient: Simple Fluids.Energy transfer in space is the dy-
namical cause for the thermal conduction in the fluid. As it is
for momentum transfer accompanying viscous phenomena, ener-
gy transfer in liquids is strongly influenced by density fluctua-
tions arising from the creation of voids and the variation of voids
in space, as the fluid becomes dense. It has been shown that den-
sity fluctuation theory is also applicable to thermal conduction,
and the thermal conductivityλ of a simple fluid is given by the
formula27,47

whereú̂(F,T) has the same meaning as for the bulk and shear
viscosities,η0 is the gas shear viscosity appearing in eq 3, and

with R denoting the isobaric expansion coefficient of the fluid
anda0 an adjustable parameter that is approximately equal to
1.2. The first term on the right of eq 25 represents the kinetic
energy partλ0 of λ describing the low-density behavior of the
thermal conductivitysEucken relation for gasswhereas the
second term is the potential energy part, which also looks similar
to the SE relation. The dynamical reason for this similarity lies
in the fact that the time and spatial scales of energy transfer
accompanying thermal conduction in the liquid are set by density
fluctuations and diffusion of particles over intermolecular
distances. By making use of the shear viscosity formula 22,
the formula for the thermal conductivity can be also written as

This relation is obviously a generalization to the liquid density
regime of the Eucken relation 1 for gas-phase transport processes
discussed earlier.

Apart from the theoretical implication of the existence of a
common dynamical mechanism for the potential energy parts
of the thermal conduction and viscous phenomena in the liquid
density regime, the relation by itself can be quite useful at the
practical level because it makes it possible to compute the
thermal conductivity from the information on the shear viscosity
in the gas and liquid density regimes of the fluid, which is easier
to measure with good accuracy than is the self-diffusion
coefficient. Relation 30 or 35 has been applied to calculate the
thermal conductivity of monatomic fluids such as argon, xenon,
and krypton in excellent agreement with experiment.

Figure 5 shows the density dependence of the thermal
conductivity of argon:T ) 348.15 K is well above the critical

ηb ) F2

9D
$(n,T) exp[- ú̂(F,T)] (28)

ηb ) 2
3(1 - c

FD0

η )η (29)

λ ) fECVη0 + F2

6D
〈ø〉 exp[-ú̂(F,T)] (30)

Figure 5. λ vs F for argon atT ) 348.15 K. The solid curve is the
theory withκ* given by eq 34 and the broken curve is the theory with
κ* ) 0.4. The symbols represent the experimental data. Reproduced
with permission from K. Rah and B. C. Eu (J. Chem. Phys.2001, 115,
9370). Copyright 2001 American Institute of Physics.

〈ø〉 ) øv + øω (31)

øv ) -
4πkBκ*

m ∫0

rmaxdr r 4V(r) g(r,n,T) (32)

øω )
4πkBκ*

5m ∫0

rmaxdr r 5V′(r) g(r,n,T) (33)

κ*) a0
RT

1 + 2RT
(34)

λ ) fECV(1 +
〈ø〉

fECV$
)η0 +

〈ø〉
$

η (35)

Feature Article J. Phys. Chem. A, Vol. 110, No. 3, 2006837



temperatureTc ) 150.86 K for argon, so thatú̂ ) 0 for this
case. It should be noted thatκ* ) 0.4 is the low-density limiting
value ofκ*, which was taken for the broken curve in Figure 5.
Therefore the density dependence of the isobaric expansion
coefficientR in κ* becomes important as the density increases.
The generalized Eucken relation for simple fluids is tested in
Figure 6 by usingC1

/ ) ø/ω, because this quantity is identical
with the ratio 〈ø〉/$ and made parameter-free becauseT )
348.15 K is well aboveTc and thusú̂ ) 0. Comparison with
experimental data63 indicates that the generalized Eucken
relation is well obeyed by liquid argon. Together with relation
22 and formulas 26 and 27, relation 20 or 30 forms a reliable
molecular theory of thermal conductivity of simple liquids.

3.2.4. Relation of Tracer Diffusion Coefficient to Self-Diffu-
sion Coefficient.The density fluctuation theory employed to
obtain the relations between the viscosities, or thermal conductiv-
ity, and the self-diffusion coefficient presented earlier does not
yield a relation between the diffusion coefficients of a mixture
and the self-diffusion coefficient. The desired relation, however,
can be obtained by means of the MFV theory16,18-21 of diffusion
in a mixture. For this purpose it is first necessary to apply the
ideas underlying the MFV theory of a pure substance to a fluid
mixture. For a binary mixture the MFV theory yields the
diffusion coefficientD12 in the form17

whereV12
/ is the minimum free volume facilitating diffusion,ϑ

is a parameter characterizing the free volume overlap, and

with F ) F1 + F2. The product of factorsV12
c ≡ ϑV12

/ may be
regarded as the critical free volume activating diffusion in the
mixture. The mean free volume may be calculated with the help
of the GvdW equation of state for the mixture18,19,47

whereA andB are defined by the formulas

with Xi denoting the mole fraction of speciesi andσij the point
at whichVij(r) ) 0, whereVij(r) is the potential energy of pair
ij . By using the GvdW equation of state 38, we obtain the
statistical mechanical representation of mean free volume per
molecule47

This statistical mechanical formula makes it possible to compute
the mean free volume from a knowledge of pair correlation
functions gij(r,n,T). An MC simulation method64 provides
gij(r,n,T), given the intermolecular forces. The critical free
volume for a binary mixture may be expressed in the form

whereϑiVi
/ (i ) 1, 2) is the critical free volume for speciesi.

The tracer diffusion coefficientDt(2) for species 2 is then
obtained from eq 36 by taking the limitX2 f 0:

From eq 36 the self-diffusion coefficientD1 ≡ D11 of the solvent
species 1 can also be obtained in the form

Taking the ratio ofDt(2) to D1 the relation ofDt(2) andD1 is
obtained:

This formula enables us to compute the diffusion coefficient of
the tracer solute from the knowledge of the self-diffusion
coefficient of the solvent. The validity of this relation has been
extensively and successfully tested20 for mixtures of organic
compounds on application of the Bondi-Edward rule65,66 for
estimating the van der Waals radii of complex organic mol-
ecules. Relation 47, however, is not expected to be applicable
to large tracer particles such as colloids suspended in a medium

Figure 6. C1
/) ø/ω at two isotherms. The curves are theoretical:s,

at T ) 298 K; - - -, at T ) 348 K. The symbols are for the
experimental data by Michels et al.63 Reproduced with permission from
K. Rah and B. C. Eu (J. Chem. Phys.2001, 115, 9370). Copyright
2001 American Institute of Physics.
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of much smaller particles. For such systems free volume theory
would require significant modifications.

In Figures 7 and 8, the ratioRd ) Dt/D1 is plotted againstRs

computed with the Bondi-Edward rule for estimating the van
der Waals radii of various organic solutes examined. The arabic
numerals stand for various organic compounds examined, which
are common laboratory chemicals. The names of the compounds
are too numerous to list here: interested readers are referred to
the original paper20 and to ref 47 for a listing of them. The
important point is that relation 47 allows computation of the
tracer diffusion coefficient from a knowledge of the self-
diffusion coefficient of the solvent, and vice versa, according
to the MFV theory employed to derive relation 47. In view of
the biological and biochemical relevance of the chemical
compounds examined, it is expected that relation 47 may have
considerable practical utility.

4. Generalization of the Relations to Complex Fluids

The relations presented for simple liquids in the previous sec-
tion can be generalized to complex liquids. The problem is tanta-
mount to generalizing the density fluctuation theory of transport
processes in simple liquids, the MFV theory of diffusion, and
the GvdW equation of state to complex liquids. It was found that
this aim could be adequately achieved if the site-site interaction
model was employed for the interaction potentials of the com-
plex liquids. In this model the nonbonded atoms or groups in
complex molecules interact with each other through spherically

symmetric pairwise-additive potentials, e.g., Lennard-Jones po-
tentials, whereas the bonded atoms or groups are either bonded
at a fixed distance or interact through a Morse or harmonic po-
tential. Particularly for hydrocarbons or polymers we may as-
sume a freely jointed chain of beads interacting through pair-
wise-additive Lennard-Jones potentials. Generalization13,14,47,52

of density fluctuation theory has been made for rigid homo-
nuclear diatomic or linear molecules of two identical interaction
sites. In such a model the potential energy contributions to the
transport coefficients, shear and bulk viscosity and thermal con-
ductivity, remain remarkably the same in form as those for mon-
atomic (i.e., simple) liquids, except that the site-site pair corre-
lation functions should be calculated appropriately for the site-
site pairs of interest by means of either an integral equation
theory67 or an MC simulation method.64 The MVF theory of
diffusion and the GvdW equation of state should be also modi-
fied appropriately. With the aforementioned allowance in the
difference of the meaning of the pair correlation function ap-
pearing in the formula for the mean free volumeVf and in the
expression for$ for the viscosities or〈ø〉 for the thermal
conductivity the relations of transport coefficients for rigid mole-
cules of homonuclear interaction sites are formally the same as
those already presented for monatomic liquids, eqs 22, 28, and
30. Of course, the kinetic energy parts of the formulas mentioned
should be appropriately calculated with the diatomic molecular
versions,35 which have been already discussed in section 2, or
with polyatomic versions.35,68Diatomic and polyatomic transport
cross sections of dilute gases are rather time-consuming and
difficult to calculate precisely. However, in the high-density reg-
ime the kinetic energy contributions to the transport coefficients,
such asη0 andλ0, are small compared to the potential energy
contributions, so that for all practical purposes one may simply
use the transport cross sections averaged over rotational angles
of molecules. If this approximation is used, then it is possible
to use the transport coefficients for dilute spherical molecules
with the diameters of the molecules appropriately adjusted.

The density dependence of the shear viscosity of carbon
dioxide atT ) 260 K andT ) 290 K is shown in Figure 9. The
solid curves are experimental data represented by a fitting
formula of Fenghour et al.,69 whereas the symbols are theoretical
values computed from relation 22 appropriately generalized to
a rigid two-interaction-site molecular fluid modeling carbon

Figure 7. Rd ) Dt/D1 vs Rs when solvent effects are assumed
negligible. Reproduced with permission from K. Rah, S. Kwak, B. C.
Eu, and M. Lafleur (J. Phys. Chem. A2002, 106, 11841). Copyright
2002 American Chemical Society.

Figure 8. Rd ) Dt/D1 vs Rs when solvent effects are present.
Reproduced with permission from K. Rah, S. Kwak, B. C. Eu, and M.
Lafleur (J. Phys. Chem. A2002, 106, 11841). Copyright 2002 American
Chemical Society.

Figure 9. η vs F for carbon dioxide atT ) 260 K (upper curve) and
290 K (lower curve). The solid curves are the experimental results of
ref 69, whereas the open circles are theoretical results of ref 24.
Reproduced with permission from A. Eskandari Nasrabad, R. Laghaei,
B. C. Eu (J. Phys. Chem. B2005, 109, 8171). Copyright 2005 American
Chemical Society.
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dioxide. The value ofú̂ is equal to zero in the supercritical region
and is obtained from the formulaú̂ ) 4.70- 8.51F + 3.86F2

in the subcritical region. The temperature dependence ofη
predicted by the theory is examined for three isochores in Figure
10. The curves represent experimental data obtained from the
fitting formula of Fenghour et al.,69 and the symbols are the
theoretical predictions of the theory.24 The theory presented for
rigid two-interaction-site molecular fluids was also tested for
liquid nitrogen and found to yield excellent results for the density
and temperature dependence in comparison with experiment.
For the thermal conductivity of rigid two-interaction-site mo-
lecular fluids, we have available only thermal conductivities
computed with the generalized Eucken relation. In Figure 11,
the thermal conductivity of nitrogen atT ) 298 K (>Tc ) 126.2
K) is shown as a function of density. The solid curve is the
theory with κ* given by eq 34 and the broken curve is the
theoretical prediction withκ* ) 0.56. The symbols represent
experimental data.70,71 In Figure 12, the thermal conductivity
of carbon dioxide atT ) 470 K (>Tc ) 304.1 K) is plotted

against density. The meanings of the curves are the same as for
Figure 11, and the symbols represent experimental data.71,72For
these two figures experimental values were used forλ0 because
of the difficulty of calculating precise values ofλ0 for diatomic
gases. Because good values forD are not available in the
literature and the MFV theory forD was not previously
available, the diatomic fluid version of the generalized Eucken
relation, eq 35, was utilized to calculate the thermal conductivity
of diatomic fluids. These comparisons clearly validate not only
the generalized Eucken relation used but also the underlying
relation betweenλ and the self-diffusion coefficientsD0 and
Dsthat is, the density fluctuation theory. Application of the
MFV theory of diffusion and GvdW equation of state for diato-
mic fluids to calculate the thermal conductivity of carbon dioxide
from the generalized density fluctuation formula is recently made73

successfully. The results of the study will be reported soon.
If the two interaction sites in the rigid molecules are not

identical, that is, the rigid molecules are not homonuclear, then
$ and 〈ø〉 must be replaced by

where

with m denoting the molecular mass. Generalization of these
relations to more complicated polyatomic liquids, such as
polymeric liquids, is not available at present. They are obviously
a subject that should be studied in the future.

5. Concluding Remarks

The problem of correctly calculating the density and tem-
perature dependence of transport coefficients of dense gases and

Figure 10. η vsT for carbon dioxide atF ) 1.20 g cm-3 (upper curve),
F ) 1.25 g cm-3 (middle curve), andF ) 1.30 g cm-3 (lower curve).
The curves represent the experimental results from ref 69, whereas the
symbols represent the theoretical results of ref 24. Reproduced with
permission from A. Eskandari Nasrabad, R. Laghaei, and B. C. Eu (J.
Phys. Chem. B2005, 109, 8171). Copyright 2005 American Chemical
Society.

Figure 11. λ vs F for nitrogen atT ) 298 K.The symbols represent
the experimental data:O, Younglove;70 0, Le Neindre et al.71 The
solid curve is the theoretical result withκ* given by eq 34 and the
broken curve is the theoretical result withκ* ) 0.56. Reproduced with
permission from K. Rah and B. C. Eu, (J. Chem. Phys.2002, 117,
4386). Copyright 2002 American Institute of Physics.

Figure 12. λ vs F for carbon dioxide atT ) 470 K.The symbols
represent the experimental data:O, Younglove70; b, Le Neindre et
al.;71 4, by Vesovic et al.72 The meanings of the curves are the same
as for Figure 11. Reproduced with permission from K. Rah and B. C.
Eu (J. Chem. Phys.2002, 117, 4386). Copyright 2002 American
Institute of Physics.
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liquids from a molecular interaction model has been a long
standing challenge in statistical mechanics. In recent years, the
challenge has been increasingly met with MDS methods, but
MDS methods also have their own limitations. It is not an
exaggeration that the aforementioned problem has been one of
the principal motivations for developing the kinetic theory of
dense gases and liquids, and there have been numerous
investigations in various directions made in the past to calculate
transport properties74 and relations43,75 between macroscopic
properties by using kinetic theory methods.1-7 Because these
investigations follow the traditional route in kinetic theory by
which macroscopic quantities are expressed in many-particle
collision operators of one kind or another, they all require a
systematic solution of many particle dynamics for the collision
operators involved. For example, Mehaffey and Cukier43b

employ a dense fluid kinetic theory, in which collisions are
treated with repeated ring diagrams for many-particle collisions,
and deduce an SE-like relation. Owing to the difficulty in
obtaining a practical and correctly behaved solution of many-
particle dynamics, such kinetic theory approaches have not
yielded density and temperature dependence of transport coef-
ficients of liquids that can be compared with experiment.

In the density fluctuation theory, many-particle dynamics does
not appear in the form of a many-particle collision operator but
is implicit in the self-diffusion coefficient and the equilibrium
pair correlation function. And the self-diffusion coefficient can
be deferred to a separate treatment by another theory, for exam-
ple, the MFV theory of diffusion. Interestingly, the MFV theory
enables us to avoid directly solving many-particle collision
dynamics unlike the aforementioned kinetic theory approaches.
A combination of the density fluctuation theory, the MVF theory
of diffusion, and the GvdW equation of state has thus provided
us with a practical and accurate molecular theory of transport
coefficients, which yields reliable values for them once the equil-
ibrium pair correlation functions have been suitably calculated
by either an integral equation theory or an MC simulation meth-
od. Because the latter yields rather accurate results efficiently,
it is preferable. In this connection, it should be remarked that
MC simulation methods cannot be applied to calculate dynami-
cal quantities such as autocorrelation functions appearing in the
linear response theory or transport coefficients appearing in the
traditional kinetic theory. The present theory therefore is differ-
ent from the aforementioned kinetic theories and MDS or non-
equilibrium MDS methods in that with only an MC simulation
method the transport coefficients can be calculated in good ac-
curacy over wide ranges of density and temperature. It is a tre-
mendous advantage that solution of many-particle collision dy-
namics can be effectively replaced by an MC simulation method,
which involves no subtleties encountered in nonequilibrium
MDS methods or is not as time-consuming as MDS methods.

The set of four transport coefficientsD, η, ηb, andλ, however,
contains three parametersR, a0, andúsalthough less than one
for each transport coefficientswhich, once determined either
at the low density limit or with a subcritical isotherm, remain
applicable to all densities and temperatures. Although derived
in approximations, the relations of transport coefficients enable
us to compute in good accuracy the density and temperature
dependence of transport coefficients over the entire density and
temperature regimes experimentally studied with the so deter-
mined parameters and with an MC simulation method forg(r)
alone.

The aforementioned relations have been successfully validated
by comparisons with experimental data available in the literature,
as has been shown in this article by using salient examples.

We are now thus in possession of an approximate, but practical,
molecular theory of transport coefficients of dense gases and
liquids, which enables us to compute and comprehend the
properties of transport coefficients both for simple fluids and
for complex fluids such as diatomic fluids. The theory points
the way to treat the relations in better approximations and also
for more complex fluids, but this task is left for future work.
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