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Nonequilibrium statistical mechanics via density fluctuation theory predicts relations between the bulk and
shear viscosity, thermal conductivity, and self-diffusion coefficient of a fluid. In this Feature Article, we
discuss such relations holding for fluids over wide ranges of density and temperature experimentally studied
in the laboratory. It is discussed how such relations can be used to successfully compute the density and
temperature dependence on the basis of intermolecular interaction potential models with the help of the modified
free volume theory and the generic van der Waals equation of state once the parameters in them are determined
at a low density or at a subcritical temperature. Although some approximations have been made to derive
them, they represent a reliable molecular theory of transport coefficients over the entire density and temperature

ranges of fluids-namely, gases and liquids theory hitherto unavailable in the kinetic theory of liquids and
dense gases.

1. Introduction however, have their own limitations. In addition to the afore-

) o ) ) mentioned problems, the plethora of thermophysical properties
Linear transport coefficients, such as shear viscosity, bulk gnq, in particular, of transport coefficients tends to make their
viscosity, thermal conductivity, and diffusion coefficients, are moglecular understanding appear even more complex and daunt-
an important class of thermophysical properties of matter, which jng. Therefore the complex and difficult task would be made
are indispensable for understanding the structure of matter andiess daunting if there were some rigorous or sufficiently accurate
its thermophysical behavior, both near and far removed from relations between the various transport coefficients. One typical

equilibrium, and in engineering design of materials processing. example for such relations is the StokéSinstein (SE) relatioh’

A number of formal theoriés’ have been developed for that  that relates the (tracer) diffusion coefficient to the viscosity of
purpose in nonequilibrium statistical mechanics and kinetic the medium. However, the SE relation was derived by using
theory of gases and liquids in the past. However, in the densemethods of macroscopic physics and for particles of macroscopic
gas and liquid density regimes these theories have not yieldedsize suspended in a continuous medium. If some relations akin
the density and temperature dependence of the transporto the SE relation can be derived for particles of molecular size
coefficients as was initially expected. The primary reason is by means of nonequilibrium statistical mechanics or the kinetic
that the desired results require accurate solutions of many-theory of dense gases and liquids, it will be extremely helpful
particle dynamics, but such solutions are not possible to obtain for us to understand the thermophysical behavior of transport
in closed form. For this reason, only the linear response theory, properties. In fact, such relations would even make it possible
which is in a form more readily amenable to computer to examine the properties of transport coefficients semiempiri-
simulations, has been studied by applying molecular dynamicscally by using the information provided by one transport
simulation (MDS) methods. Computer simulation methods, coefficient to study another with regard to the density and
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wherelo andyg are the thermal conductivity and the viscosity
of the gas, respectively, ar@, is the specific heat at constant
volume. The factofg is known as the Eucken factor and has
the value®, for noble gases. This relation is well verified
experimentally and the kinetic theory based on the Chapman
Enskog metho# supports it in reasonable accuracy. For
polyatomic gases Euck&hsuggested a decomposition of the
factor fe intq translational and internal contributiorfs =
fi(CIC,) + f2'(C™/C,), whereC! and C" were the transla-
tional and internal specific heat, respectively, dadand fi"
were, respectively, suggested to%eand 1. Such values turned
out to have only a limited range of applicability, and later
authors made a number of improvements on the Eucken factor
for polyatomic gases. Ubbelohd8®Hirschfelder’® and Mason
and MonchicR-32were all associated with the improvements.
We will find that this relation can be incorporated into a
generalized relation that also holds in the liquid density regime.
Closely related to the Eucken relation is the relation between
the thermal conductivity and the self-diffusion coefficiddbg
= Dgl, which may be written, in the Chapmai&nskog first
approximatior?® as

2
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Byung Chan Eu, a graduate of Seoul National University, received a and similarly for the shear viscosity
Ph.D. degree in Chemical Physics from Brown University in 1965.
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nonequilibrium statistical mechanics and irreversible thermodynamics
of systems far removed from equilibrium, generalized hydrodynamics, . . . . .
gas dynamics, and rheology of fluids. In this expressiony = mnwith n denoting the number density

andW{(r) given by
temperature dependence. For transport processes in gases the
Eucken relatiot provides a typical example of such a relation. Dfey — [P GPn2rt2 [ b by
In a recent serié 22 of articles on transport coefficients of W = jt; e’g ﬂJ (1~ cos X)E d(g) dg” (&)
liquids, simple and complex, a nonequilibrium statistical me-
chanical theory, termed the density fluctuation theory, has beenwherey represents the classical scattering angle expresséd by
developed by the present author and his collaborator. The density
fluctuation theory gives rise to relations between the potential _ o z( _ b_2 _ 4U(R))_1/2
he oer x=m—2b[ dRR?1 (5)
energy part of transport coefficients and the self-diffusion fo R? mgz
coefficient of the fluid of interest that are reminiscent of the
SE relation but with the coefficient factor quite different from In this expression for classical scattering anghR) is the
that of the SE relation. Such relations have been used tointermolecular potential, which may be the Lennard-Jones
successfully analyZ& 27 experimental data on the transport potential
coefficients of simple as well as complex liquids, such as
nitrogen and carbon dioxide, on the basis of an intermolecular v(R) = 46[(0/R)12 - (a/R)G]
potential model. In this Feature Article we would like to discuss | i ) i i
such relations between transport coefficients of dense gases andith the classical turning poin defined by
liquids, which have been derived by means of nonequilibrium 2 4ty
statistical mechanics and successfully validated through exten- 1-— b Y—o
sive comparison with experimental data with regard to their ro2 mg2
density and temperature dependence. Such relations provide us
with a much Sought molecular (Statistical meChanical) theOI’y andb is the impact parameter_ The |ntegM)(r) is Comput_
of transport coefficients and their thermophysical behavior. able once the Scattering ang|e is known as a function of the
. . impact parameteb and the relative speed for the given
2. Eucken Relation and Ratio for Gases intermolecular potential model. For hard spheres
2.1. Eucken Relation The earliest example for the relation
between transport coefficients, other than the SE relation, ap-
pears to be that of Eucken, who suggested on empirical grounds
that the ratio of the thermal conductivity to the viscosity of a
noble gas is a constatftlt is known as the Eucken relati#ted whereas for an inverse power law potentigR) = «1/R’
it follows from eqs 4 and 5 thatl)(r) = AWML + 2 —
Ao =1eCmo 1) 2/(v — 1)) with A(v) = /5(1 — cod y)v do.

1+ (-1)
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The existence of relations 2 and 3 suggests that the time andwhere the constar® differs from the constant in relation 3
spatial scales of thermal conduction and momentum transfer for monatomic gases. Apart from the coefficient factors, relations
accompanying viscous flow in gases are set by diffusion of 3 and 14 are the same with regard to the proportionalityqof
molecules, and that their scales are directly proportional to thoseto Dy, indicating that the momentum transfer associated with
of self-diffusion. For monatomic gases the Eucken relation may viscous phenomena is directly proportional to the mass transfer
be regarded as a direct consequence of relations 2 and 3. liaccompanying diffusion, and hence the time and spatial scales

should be noted that, becausBy is independent of density,
the gas phase thermal conductivity and shear viscokjtsind
70, are also independent of density, as is well-known experi-
mentally in the normal density regime of gases.

For polyatomic molecules the kinetic theory results for the
translational motion part of the transport coefficients may be
written as?

5 (mlggT)ll2 f,
o= 1_6 7T azm(z’z)* 0 (6)
_ 75kB(kBT)1/2 f,
07 64 \am/ 2eax[
15k (f;
= m(g)’?o (7)

wheref, andf; are correction factors resulting from higher-
order kinetic theory approximations, which differ from unity
by at most a few percent. It should be noted that the thermal
conductivity Ao in eq 7 is for the translational part only.
Similarly, the self-diffusion coefficienDi; is given by the
formula

fD
A

wherefp has a meaning similar g andf, and is close to unity.
The symboldWW22* [etc. denote the collision bracket integrals
averaged over rotational angles of a polar molecule:

Do
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Qi+ = [ dbb(1—cosy) (11)

According to Kihara's second approximatid*

_ i * M 712 — E’ _ §
fy =1+ Jgd8E - 7] h=3h—g (12
=1+ é[GE(D* - 5P TH 5] T (13)

with the definitionsiA* = [RE2* QA [] [C* = [QL2k[]
[QADx[JandE* (= Q@3 [[Q@2¥[] The Kihara approxima-
tion formulas are known to be fairly accurate. The relations
involving the averaged collision bracket integrals are applicable

to gases of polar molecules although they appear to be formulas

for simple gases.
The relation betweem, and Do = D13 for polar gases is
therefore given by

(1,1
5(&) @0 4

o= 6 fD BD(Z’Z)* Efl)DOE CpDO

of the two transfer processes are directly related. This direct
proportionality relation no longer holds in the liquid density
regime and beyond, as will be seen.

2.2. Eucken Ratio.For want of appropriate terminology the
ratio of bulk viscosity to shear viscosity will be referred to as the
Eucken ratio. Because it was Eucken who considered the rela-
tion of shear viscosity and thermal conductivity for gases, the ter-
minology seems appropriate. The first-order Chapranskog
theory predicts that monatomic gases have a vanishing bulk
viscosity, but that is not the case for polyatomic g&sescause
of the presence of internal degrees of freedom into which the
translational energy can be transferred, and vice versa. The bulk
viscosity of a polyatomic gas is related to the shear viscosity,
and the ratio of the bulk viscosity. to the shear viscosityo,

_
Mo

f (15)

v

may be a constant but is generally dependent on temperature.
Such a relation can be practically rather useful because bulk
viscosities are difficult to measure precisely, the only practical
method being the methd&38 of ultrasonic absorption and
dispersion by the gas, but this method involves measuring a
rather minor contribution attributable to the bulk viscosity of
the entire ultrasonic absorption and dispersion spégtitais
worth noting that Assael et 4. suggested a temperature
independent form foi; depending on molecular parameters only:

¢~ 60r
" 13r+6

(16)

wheret = 4lr/mog with or denoting the diameter of the rough
sphere andg its moment of inertia resulting from the internal
distribution of mass within the sphere. For carbon dioxide the
value ofr is estimated to be 0.048.

3. Relations for Transport Processes in Liquids

The relations of transport coefficients presented for processes
in gases do not apply to those in liquids because momentum
and energy transfers in liquids are accomplished in a fundamen-
tally different manner than in gases. Because of its attractiveness
the applicability42of the SE relation to particles of a molecular
size has been tested by using experimental data on the viscosity
and diffusion coefficient. However, such scrutinies have been
inconclusive because in some cases the SE relation gives
qualitatively reasonable correlations with experimental observa-
tions, whereas for some others it fails noticeably. A number of
authorg® have made statistical mechanical derivations of the
SE relation, but after rather involved calculations, which tend
to obscure the underlying physical process. Such relations in
the liquid density regime therefore need appropriate fresh
derivations by an entirely different route in the kinetic theory
or nonequilibrium statistical mechanics of transport processes
in liquids. We have been able to achieve the desired aim more
definitively and quantitatively by means of the density fluctua-
tion theory1~14.16.22and successfully validat&2>27the relations
with the help of experimental and MDS data.
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3.1. Stokes-Einstein Relation. Despite its limitations the
SE relation not only is frequently used but also contains valuable
insights. Therefore it is worthwhile to examine how it is derived.

According to Stoke$§ the kinetic (drag) forcé acting on a
sphere by the medium in which the sphere is immersed and
moving at velocityss makes it possible to calculate the force if
the appropriate hydrodynamic equations are softdids found
that the forceFy is given byFy, = —anovs, whereo is the radius
of the spherea = 6 for the stick boundary conditidf (the
medium sticks at the surface of the sphere in this boundary
condition) anda = 4x for the slip boundary conditidf (the
medium slips at the surface in this boundary condition), @nd
is the viscosity of the medium. Therefore the force exerted by
the sphere on the mediuR is given byFs = — Fx = anovs.

In his theory of Brownian motion Einstéiiconsiders a dilute
suspension of? macroscopic (colloidal) particles, which has
an osmotic pressurp = vkgT. Einstein regards the dynamic
equilibrium as being brought about by two processes: (1) a
movement of the suspended particle under the influence of the
force Fe. (2) A process of diffusion arising from the irregular
Brownian motion of the particles produced by the thermal
agitation of molecules of the medium. By invoking the
thermodynamic equilibrium condition, he obtains the dynamic
(i.e., thermodynamic) equilibrium conditionFs = dp/ox =
ks Tov/dx, if the particles are assumed to move in the direction
of the x coordinate in the appropriately chosen coordinate
system. The forces acting onparticles generate a fluxvs =
—vFdJano, whereas the diffusion of the suspended particles
produces the mass fluxys = —Dav/dx in accordance with
Fick's law2546 Balancing the opposing forces and making use
of the dynamic equilibrium condition he finds the SE relation

_ kT

" aoD

n (17)

The salient feature of the derivation of the SE relation is the
use of (1) the Naviet Stokes equatiofd$to calculate the force
on particles suspended in the medium and (2) Fick's¥dfof
diffusion for the suspended particles, both of which are

Eu

distances. Consequently, the time and spatial scales of momen-
tum and energy transfer attendant on the transport processes in
liquids are set by the density fluctuations and diffusion of
particles. The density fluctuation theory explicitly takes into
account diffusion of particles over the range of intermolecular
distance for the derivation of relations of transport coefficients
mentioned. In the following, we describe how this aim can be
achieved, but because of the space limitation, only the most
salient examples for validation of the results will be given. Itis
the principal aim of this Feature Article.

3.2.1. Relation of Shear Viscosity to Self-Diffusion Coef-
ficient: Simple Fluids Shear Viscosiffjo obtain the statistical
mechanical formula for shear viscosity, it is necessary to derive
the constitutive relation for the shear stress in the fluid subjected
to shearing externally applied. In principle, such a relation
should be derived either from an appropriate kinetic equation,
as has been for relation 3 or 14, or by means of nonequilibrium
statistical mechanics. In the liquid density regime the desired
constitutive relation is obtained more readily in a more useful
form if the shear stress tensor is calculated by using its statistical
mechanical expression and taking density fluctuations and the
structure of the liquid into account. The density fluctuation
theory!1-14.16.220f transport processes developed recently enables
us to achieve the desired aim. Unlike the Chapmianskog
method applied to the dense fluid kinetic equation (e.g., a
generalized Boltzmann equatfointhe density fluctuation theory
takes into account the structure of liquids through density
fluctuations, which give rise to density variation over intermo-
lecular distances in the liquid. The density distribution function
therefore may be expanded as a series in the density gradient.
Eliminating the density gradient with the help of hydrodynamic
equations and the constitutive equafiofor the fluid velocity,
it is possible to derive the Newtonian law of viscosity for the
shear stress tensor, from which the statistical mechanical formula
for the shear viscosity of the liquid can be derived. The formula
so derived consists of a kinetic energy (dilute gas) part made
up of relation 3 and a potential energy part similar to the SE
relation. It has the forAt:13.47

macroscopic equations. The transport coefficients are, of course,

assumed to be known. Therefore there is no molecular theory
provision for them in the SE relation. Nevertheless, Einstein
additionally develops a stochastic theory of diffusion, which
yields his well-known mean square displacement formula.
Another important point to note is thBtis evidently the tracer
diffusion coefficient according to Einstein’s derivation made
by using the osmotic pressure of the suspension of Brownian
particles. We will see that relations akin to the SE relation can
be obtained for the potential energy part of transport coefficients
in the liquid density regime by means of statistical mechanics,
but they are not exactly the SE relation.

3.2. Density Fluctuation Theory and Relations between
Transport Coefficients. The SE-like relations mentioned can
be derived by means of nonequilibrium statistical mechanics,
but by an approach radically different from the traditional route.
The approach taken is the density fluctuation theory, and it is
based on the following observation. As the density increases to
the liquid density, voids created in the liquid play an increasingly
important role, giving rise to strong density fluctuations over

2
= p—
17 =cpD, + 6Da)(n,T) (18)

wherew(n,T), defined by

o, T) = iﬂa/;rma*dr (5(r) gr.nT) O(E—1)  (19)

contains the information on intermolecular interactions and the
structure of the fluid. In this expressiot{(r) = du(r)/dr; g(r,n,T)

is the equilibrium pair correlation functiofi(x) is the Heaviside
step functionf(x) = 1 for x > 0 and O forx < O; rmax is the
range of the intermolecular forceg; is the range of density
fluctuations in the liquidg is the constant factor appearing in
eq 3; Dy is the self-diffusion coefficient of the gas; amlis

the self-diffusion coefficient of the pure liquid. The valuemf
which is defined by eq 3, is approximately equal to unity. The
density fluctuation rangé, which, mathematically from the

intermolecular distances. The momentum and energy transferviewpoint of eq 19, may be regarded as the cutoff distance of
accompanying transport processes in liquids therefore becomethe correlation range of|(r), is not well defined but has a

strongly dependent on density fluctuations, which are also
modulated by diffusion of molecules over intermolecular

distributionP(&). This distribution is believed to be a measure
of random distribution of voids around radial positiofirom
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the point of attention in the liquid. It is assumed to be, as is
usual for random distributions, a stretched exponéfitial

P(E) = %1 o]~ m(:)]

JydEPE) =1

(20)
(21)

wheref(p,T) andy are parameters to be chosen appropriately
it turns outy does not explicitly appear in the formulas for the
transport coefficients. Averaging formula 18 over the distribution
P(&) yields the formula for the observed shear viscosity, which
will also be denoted by the same syni3ét47y, namely,

2 A
n= oDy + s (nT) expl-E(. )] (22)
where
T =2 2 [y () o(rnT) (23)
1 1 O 1 1

The density fluctuation rang&should evidently depend oh

If Tz T (Te = critical temperature), the density fluctuation
rangeé& should be roughly of the same order of magnitude as
the range of the intermolecular force or larger, tha£ig, rmax

In that case, becaug¥é—r) = 1 in eq 19, it follows that

Epm =0

for TxzT, (24)
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Figure 1. 5 vs p. The symbols are (theory),O (exp) atT = 107 K;
+ (theory),O (exp) atT = 125 K; * (theory), 0 (exp) atT = 139 K;
and* (theory),a (exp) atT = 143 K. Reproduced with permission
from R. Laghaei, A. Eskandari Nasrabad, B. C. BuRhys. Chem. B
2005 109 5873). Copyright 2005 American Chemical Society.

Carlo (MC) method, then the shear viscosity can yield temper-
ature and density dependence in excellent agreement with
experiment over the entire ranges of temperature and density
experimentally examined. For this purpose, the expod&st

of course, must be empirically determined at an isotherm in
the subcritical regime. In the supercritical regime of temperature
such a procedure is unnecessary, and the formula becomes free
from ¢ becausel(p) = O in the supercritical regime of

in eq 22. On the other hand, because the particles are moretcemperature.

closely packed ifTf < T¢than if T > T, and hence the density
fluctuation range should be less thasm, the functionZ(p,T)

is not equal to zero but should depend @it therefore may
be expanded in a series pf

2(P1T) =G T &p+ Czpz toeee

where the coefficient&o, {1, {o, etc. are parameters independent
of T.

(25)

In connection with this manner of takiriifo, T), it should be
remarked that the two different forms f@(p,T) taken in the
supercritical and subcritical regimes of temperature do not have
such a sharp demarcation pointTat T, and it may be more
useful in practice to continue to use the expansion in eq 25,
especially in the supercritical regime near the critical point. This
would be tantamount to making the coefficiefitéemperature-
dependent. The present mode of expresgifgT) has been
taken to make the theory free from the parameten the

Whereas the first term on the right of eq 22 represents the supercritical regime.

dilute gas behavior of, the second term represents the potential
energy part ofy and is reminiscent of the SE relation 17. The
coefficients of the potential energy partigfhowever, are quite
different from those in the SE relation. Numerical comparisons
show that these two relations have only a limited range of
coincidencé1347In any case, eq 22 is a generalization of eq
3 to the liquid density regime, which is a statistical mechanics-

The relation for the shear viscosity, eq 22, has been
extensively tested semiempiricafly” and also with the hef26:47
of the MFV theory and the GvdW equation of stateoth of
which make the theory molecular. For lack of space we can
only present a couple of typical examples for argon and methane,
which is usually treatéfl as a simple (spherical) liquid. In Figure
1, the shear viscosity of argon at temperatures= 125 and

based relation between the shear viscosity and self-diffusion 139 K is plotted against mass densgyand compared with

coefficient.
In the low-density regime the kinetic energy part pfis
dominant whereas in the high (liquid) density regime the

experimental data. For the comparisbr 0.3890+ 0.518Qp
+ 0.257&?2 was taken in the subcritical regime of temperature.
For most thermophysical properties, methane has been success-

potential energy part becomes dominant. Thus the self-diffusion fully treated as a spherical molecule in the literatir€herefore,
coefficient dependence and thus the density dependence smoothlpy following tradition the shear viscosity of liquid methane has

cross over from one form to another as the density varies.

been examined by treating liquid methane as a simple liquid.

Therefore eq 22 may be regarded as an interpolation formulaFigure 2 is an example in which theoretical valuesnoére
with respect to the dependence on the self-diffusion coefficient compared with experimental values for methane at various

of the fluid. It is a robust relation that accurately relates the

temperatures witl represented by = 0.4992+ 2.65% +

two transport coefficients over wide ranges of temperature and 0.3327&?2 in the subcritical temperature regime. We emphasize

density for simple (monatomic) fluids, as has been shown in
the literaturet1- 2347 |f the gas-phase self-diffusion coefficient
Do is computed by means of the Chapmdinskog theory? if

the self-diffusion coefficientD is computed by using the
modified free volume (MFV) theory formul&18-21 26 for
diffusion given below, and i§(r,n,T) is computed by a Monte

that = 0 in the supercritical regime. Figures 1 and 2 indicate
the reliability and utility of relation 22.

Another type of relation between transport coefficients is
tha264"between the non-Newtonian and Newtonian viscosities,
which holds far removed from equilibrium in the high shear
regime. This relation enables computation of the non-Newtonian



836 J. Phys. Chem. A, Vol. 110, No. 3, 2006 Eu

0.22 T T T T T T —~ 14 .
7
0.2¢ o J
* 12F 8
o
0.18} o
10

0.16} i
— ® Q) %
Q) L o] N : 1
s 0.14 r E 8 o
E o2} ? ) 2 8
= "] < o x

Q 3
0.1F 8 g [a] x
] o
8 ar ]
0.08} g x 10
M 5 .gm
O 12
0.06f AL 1 2f /! "
" 6
A
0.04 . . . . . . .
032 034 036 038 04 042 044 046 048 8 . . . . . . .
8 09 1 1.1 12 13 14 15 16

3
p (gfem”) o (glem?)

Figure 2. 7 vs p for liquid methane. The symbols are * (theorg),
(experiment) aff = 120 K; @ (theory),$ (experiment) afl = 140K;

+ (theory),a (experiment) af = 180 K. Reproduced with permission
from R. Laghaei, A. Eskandari Nasrabad, B. C. BuRhys. Chem. B
2005 109 5873). Copyright 2005 American Chemical Society.

Figure 3. D vs p at various temperature®, theory;d, MDS data;
x, experiment of Naghizadeh and Ri¢eReproduced with permission
from R. Laghaei, A. Eskandari Nasrabad, B. C. BuRhys. Chem. B
2005 109 5873). Copyright 2005 American Chemical Society.

15

viscosity, given the Newtonian viscosity of a fluid. Although
quite relevant and useful in the study of rheoldg§¥discussion
of such a relation will be deferred to ref 26.

The self-diffusion coefficienD in eq 22 can be determined
by performing computer simulations for the mean square 10f
displacement of the particles. It can be also computed if the
MFV theory for diffusion is utilized, together with the generic
van der Waals (GvdW) equation of stdtél-52which can be
computed withg(r,n,T). According to the MFV theory818-21
D is given by

6
° 10
T * * 511
D=1.019-"_,/ kel exp(— I’L) (26) 12
8pg” ¥ M Y . .

BN 100 110 120 130 140 150
where the preexponential factor is the self-diffusion coefficient TK)

of hard sphere%ﬁ v is the free \_/Olume O_V(_erlap parameteris Figure 4. D vsT for argon at various isochore®, O, MFV theory:
the mean free volume, andt is the minimum free volume O MDS data: x, experimental data. Reproduced with permission from
activating diffusion. The produety = 9v* defines the critical R. Laghaei, A. Eskandari Nasrabad, B. C. HuRhys. Chem. R005
free volume facilitating diffusion of particles. It may be 109 5873). Copyright 2005 American Chemical Society.
calculated by a suitable model for the minimum size of voids,
activating diffusion in the liquid.
In most free volume theories in the literattie® v is treated experiment&” and MDS?® data. In Figure 4, the MFV theory
as an empirical parameter, but in the MFV theory it can be given results of the temperature dependenc® et various densities
a precise statistical mechanical representation. According to theare compared with both experimerffaland MDS dat&?
GvdW equation of stafé5152the statistical mechanical expres- Because the values @ obtained from the MFV theory are
sion for v is given by reliable, we may also expect that the shear viscosity values will
be equally reliable: as a matter of fact, this expectation has
o, 3, -1 already been fulfilled, as has been shown in Figures 1 and 2.
pp=v|l= 3k, T/o drrv(r) g(rn.T) (27) Figure 4 shows that the theory and the MDS data agree well
throughout the density range considered. The experimental point
in terms of the pair correlation function, which contains the (x) significantly deviates from both the theory and the MDS
information on the structure of the liquid and the intermolecular data at the high-temperature regime. It might be possible that
force. Hereu (e.g., the diameter of the hard sphere) is the point the experiment was not as accurate in the high-temperature
at which »(r) = 0 andg(r,n,T) can be calculated by an MC ~ régime as at intermediate temperatures.
simulation method. The self-diffusion coefficient of the MFV ~ Therefore with the help of the MFV theory and the GvdwW
theory presented earlier has been rather thoroughly examinedequation of state the Newtonian shear viscosity of monatomic
in comparisoff18-21.23-25 wjith experimental and MDS data.  liquids can be calculated in terms§ andg(r,n,T) as a function
The numerals in Figures 3 and 4 denote different isotherms: 10f n and T once the intermolecular interaction potential is
= 140; 2= 130; 3= 120; 4= 110; 5= 100; 6= 90; 7= 145; specified. Relation 22, eq 26, and eq 27 constitute a robust
8 = 130; 9= 110; 10= 95; 11= 95; 12= 95 K. In Figure 3, molecular theory of shear viscosity.
the MFV theory results of the density dependenceDoht 3.2.2. Relation of Bulk Viscosity to Self-Diffusion Coef-
various temperatures are compared in excellent agreement withficient: Simple FluidsThe bulk viscosity is related to the excess

o @x O~
~

D x 10° (cm?/s)

xO
© O >

27N
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normal stress, which, if the fluid is compressed in the direction
of the z axis, may be written aA = %/3(Pyxx — Py, WherePy

and P,, are respectively the tangential and longitudinal com-

ponents of the pressure (stress) ter3or the fluid. In contrast

to the bulk viscosity, the shear viscosity is related to the
offdiagonal elemen®y, of the pressure tensor. Therefore, being

related to the same, both bulk and shear viscosities share the

same physical mechanism for momentum transfer, which is

responsible for viscous transport phenomena. This means that

the basic ideas of the density fluctuation theory for the shear
viscosity can be applied to the bulk visco&ftl/of simple fluids.
However, because the bulk viscosipy of dilute monatomic
gases is equal to zero at the first-order Chapntamskog theory
level, it consists entirely of the potential energy contribution

2
o= gm0 T) expl= E(p.T)] (28)

Therefore, by making use of the shear viscosity formula 22,
the bulk viscosityy, can be related to shear viscosipyby

-2

C , i

This relation is a generalization of eq 15 to simple liquids. The
bulk viscosity is generally deduced by measuring ultrasonic
absorption and dispersi#it®® by the fluid, but because the
contribution of the bulk viscosity to the absorption and
dispersion spectra is relatively small compared to the shear
viscosity contribution, the measurement of bulk viscosity entails
a sizable uncertainty. Relation 29 therefore can be useful for
avoiding the experimental uncertainty in measunjgdpecause
shear viscosity can be experimentally determined in high
precision.

Experiment®%2 shows that the ratigy/y is in the range
0.85-0.56. If the second term on the right of eq 29 is ignored,
the ratio is approximately 0.67. Therefore relation 29 can be

2

My = 3 (29)
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Figure 5. 1 vs p for argon atT = 348.15 K. The solid curve is the
theory with«* given by eq 34 and the broken curve is the theory with
k* = 0.4. The symbols represent the experimental data. Reproduced

with permission from K. Rah and B. C. Ed.(Chem. Phys2001, 115
9370). Copyright 2001 American Institute of Physics.
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Whereé(p,'l') has the same meaning as for the bulk and shear
viscosities o is the gas shear viscosity appearing in eq 3, and

Q0=+ X (31)
ro=— 4n::'(* [t ot (32)
Yo = 4”;‘;'(* [ e (1) g(rnT) (33)
o =ag (34)

with a denoting the isobaric expansion coefficient of the fluid
andap an adjustable parameter that is approximately equal to
1.2. The first term on the right of eq 25 represents the kinetic
energy partlo of 4 describing the low-density behavior of the
thermal conductivity-Eucken relation for gaswhereas the
second term is the potential energy part, which also looks similar

used to estimate the bulk viscosity with reasonable accuracyg the SE relation. The dynamical reason for this similarity lies

from information on the shear viscosity and the Chaptman

Enskog prediction for the gas self-diffusion coefficidiy.
Formula 28 has been shown to give good vaRi€g,

qualitatively and quantitatively, for the bulk viscosity of simple

fluids, such as argon, krypton, and xenon. Because the coef-

ficient of the Eucken ratio 29 was also found to be reasonable
and the behavior of the shear viscosity is in good agreement
with experiment, as noted earlier, relation 29 is expected to,
and does, yield a correct bulk viscosity; the space limitation
compels us to omit graphical presentation#grValidation of
relation 29 is available for monatomic fluids in ref 12.

3.2.3. Relation of Thermal Condugty to Self-Diffusion
Coefficient: Simple FluidsEnergy transfer in space is the dy-
namical cause for the thermal conduction in the fluid. As it is
for momentum transfer accompanying viscous phenomena, ener
gy transfer in liquids is strongly influenced by density fluctua-
tions arising from the creation of voids and the variation of voids
in space, as the fluid becomes dense. It has been shown that de
sity fluctuation theory is also applicable to thermal conduction
and the thermal conductivity of a simple fluid is given by the
formula?”47

2 ~
%= 1eCpo + §5 T eXPE-E (. T)] (30)

in the fact that the time and spatial scales of energy transfer
accompanying thermal conduction in the liquid are set by density
fluctuations and diffusion of particles over intermolecular

distances. By making use of the shear viscosity formula 22,
the formula for the thermal conductivity can be also written as

GO GO

A A _|_ AN
w)no w’?

e (35)

A= fECy(l +

This relation is obviously a generalization to the liquid density
regime of the Eucken relation 1 for gas-phase transport processes
discussed earlier.

Apart from the theoretical implication of the existence of a
common dynamical mechanism for the potential energy parts
of the thermal conduction and viscous phenomena in the liquid
density regime, the relation by itself can be quite useful at the
practical level because it makes it possible to compute the
thermal conductivity from the information on the shear viscosity

T the gas and liquid density regimes of the fluid, which is easier

to measure with good accuracy than is the self-diffusion
coefficient. Relation 30 or 35 has been applied to calculate the
thermal conductivity of monatomic fluids such as argon, xenon,
and krypton in excellent agreement with experiment.

Figure 5 shows the density dependence of the thermal
conductivity of argon:T = 348.15 K is well above the critical
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whereA andB are defined by the formulas
ar 2
A= z AR (39)
i)=1
2
3B
i)=1
B=——— (40)
1+n B, XX
]2 X%
1t 27 poo ,
AT =3 [, drr(n) g(rnT) (41)
0.6 0.9 1.2 15 27 ; .
o (aiem® B;(nT) = — %— Oajdr rsvij(r) g;(r,n,T) (42)
Figure 6. Cj= y/w at two isotherms. The curves are theoretical;
atT = 298 K; — - —, at T = 348 K. The symbols are for the

experimental data by Michels et%IReproduced with permission from with X; denoting the mole fraction of specieando; the point

K. Rah and B. C. Eud, Chem. Phys2001, 115 9370). Copyright 9’[ which gij(r) = 0, whereu(r) i§ the potential energy of pair
2001 American Institute of Physics. ij. By using the GvdW equation of state 38, we obtain the

statistical mechanical representation of mean free volume per
moleculé’

temperaturel, = 150.86 K for argon, so that = 0 for this

case. It should be noted thet = 0.4 is the low-density limiting v =o[1 = B(nT)n]

value of«*, which was taken for the broken curve in Figure 5. o 2 1

Ther(_ef_ore th_e d*ensny dep_endence of the |soba_1r|c_ expansion =1- —ZXinﬂ)o”dr ravi'j(r) g;(r) (43)

coefficiento in k* becomes important as the density increases. KT

The generalized Eucken relation for simple fluids is tested in

Figure 6 by usindC] = y/w, because this quantity is identical ~ This statistical mechanical formula makes it possible to compute

with the ratio [}lko and made parameter-free becadse= the mean free volume from a knowledge of pair correlation

348.15 K is well aboveT; and thusg = 0. Comparison with  functions g;(r,n,T). An MC simulation metho¥ provides

experimental dafd indicates that the generalized Eucken g;(r,n,T), given the intermolecular forces. The critical free

relation is well obeyed by liquid argon. Together with relation volume for a binary mixture may be expressed in the form

22 and formulas 26 and 27, relation 20 or 30 forms a reliable

molecular theory of thermal conductivity of simple liquids. Uiz = 190’12 = ﬁly’{Xl + 02”2)(2 (44)
3.2.4. Relation of Tracer Diffusion Coefficient to Self-Diffu-

sion CoefficientThe density fluctuation theory employed to  wherews’ (i = 1, 2) is the critical free volume for speciés

obtain the relations between the viscosities, or thermal conductiv-The tracer diffusion coefficienDy(2) for species 2 is then

ity, and the self-diffusion coefficient presented earlier does not optained from eq 36 by taking the limit, — O:

yield a relation between the diffusion coefficients of a mixture

and the self-diffusion coefficient. The desired relation, however, )

can be obtained by means of the MFV thé&#-2! of diffusion D(2) = D}, exg — — (45)

in a mixture. For this purpose it is first necessary to apply the YU

ideas underlying the MFV theory of a pure substance to a fluid

mixture. For a binary mixture the MFV theory yields the

diffusion coefficientD, in the formt”

* 3 kBT ﬁlui
42 D,= \J——exg——— 46
D,,= DY, ex;{— le) (36) ' 800, 7Y M F{ Vt ) (46)

f

From eq 36 the self-diffusion coefficieB, = D1 of the solvent
species 1 can also be obtained in the form

Taking the ratio ofDy(2) to Dy the relation ofD{(2) andD; is

wherevy, is the minimum free volume facilitating diffusion, obtained:

is a parameter characterizing the free volume overlap, and

1+ m/
D12 = 2 2m1r.n2 (37) 1

This formula enables us to compute the diffusion coefficient of
the tracer solute from the knowledge of the self-diffusion
coefficient of the solvent. The validity of this relation has been
extensively and successfully testédor mixtures of organic
compounds on application of the Bordtdward rulé&56 for
estimating the van der Waals radii of complex organic mol-

5 ecules. Relation 47, however, is not expected to be applicable
[p+ A(n, T)N[1 — B(n, T)n] = nksT (38) to large tracer particles such as colloids suspended in a medium

with p = p1 + p2. The product of factors?, = ¥v;, may be
regarded as the critical free volume activating diffusion in the
mixture. The mean free volume may be calculated with the help
of the GvdW equation of state for the mixtd#é%47
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Figure 7. Ry = Dy/D:1 vs Rs when solvent effects are assumed
negligible. Reproduced with permission from K. Rah, S. Kwak, B. C.
Eu, and M. Lafleur J. Phys. Chem. 2002 106, 11841). Copyright
2002 American Chemical Society.
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Figure 8. Ry = D¢D: vs Rs when solvent effects are present.
Reproduced with permission from K. Rah, S. Kwak, B. C. Eu, and M.
Lafleur (. Phys. Chem. 2002 106 11841). Copyright 2002 American
Chemical Society.
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Figure 9. 5 vs p for carbon dioxide af' = 260 K (upper curve) and

290 K (lower curve). The solid curves are the experimental results of

ref 69, whereas the open circles are theoretical results of ref 24.

Reproduced with permission from A. Eskandari Nasrabad, R. Laghaei,

B. C. Eu (. Phys. Chem. B005 109, 8171). Copyright 2005 American

Chemical Society.

900 1000

symmetric pairwise-additive potentials, e.g., Lennard-Jones po-
tentials, whereas the bonded atoms or groups are either bonded
at a fixed distance or interact through a Morse or harmonic po-
tential. Particularly for hydrocarbons or polymers we may as-
sume a freely jointed chain of beads interacting through pair-
wise-additive Lennard-Jones potentials. Generaliz&tit 752

of density fluctuation theory has been made for rigid homo-
nuclear diatomic or linear molecules of two identical interaction
sites. In such a model the potential energy contributions to the
transport coefficients, shear and bulk viscosity and thermal con-
ductivity, remain remarkably the same in form as those for mon-
atomic (i.e., simple) liquids, except that the sitgte pair corre-
lation functions should be calculated appropriately for the-site
site pairs of interest by means of either an integral equation
theonf” or an MC simulation methoff. The MVF theory of

of much smaller particles. For such systems free volume theory diffusion and the GvdW equation of state should be also modi-

would require significant modifications.
In Figures 7 and 8, the ratig; = Dy/D; is plotted againsis
computed with the BondiEdward rule for estimating the van

fied appropriately. With the aforementioned allowance in the
difference of the meaning of the pair correlation function ap-
pearing in the formula for the mean free volumeand in the

der Waals radii of various organic solutes examined. The arabiC expression forer for the viscosities orjdfor the thermal
numerals stand for various organic compounds examined, whichconductivity the relations of transport coefficients for rigid mole-
are common laboratory chemicals. The names of the compoundscules of homonuclear interaction sites are formally the same as
are too numerous to list here: interested readers are referred tQhose already presented for monatomic liquids, egs 22, 28, and

the original papef and to ref 47 for a listing of them. The

important point is that relation 47 allows computation of the
tracer diffusion coefficient from a knowledge of the self-
diffusion coefficient of the solvent, and vice versa, according
to the MFV theory employed to derive relation 47. In view of
the biological and biochemical relevance of the chemical

30. Of course, the kinetic energy parts of the formulas mentioned
should be appropriately calculated with the diatomic molecular
versions®® which have been already discussed in section 2, or
with polyatomic versiong>8 Diatomic and polyatomic transport
cross sections of dilute gases are rather time-consuming and
difficult to calculate precisely. However, in the high-density reg-

compounds examined, it is expected that relation 47 may havejme the kinetic energy contributions to the transport coefficients,

considerable practical utility.

4. Generalization of the Relations to Complex Fluids

such asjo and o, are small compared to the potential energy
contributions, so that for all practical purposes one may simply
use the transport cross sections averaged over rotational angles

The relations presented for simple liquids in the previous sec- Of molecules. If this approximation is used, then it is possible
tion can be generalized to complex liquids. The problem is tanta- to use the transport coefficients for dilute spherical molecules
mount to generalizing the density fluctuation theory of transport With the diameters of the molecules appropriately adjusted.

processes in simple liquids, the MFV theory of diffusion, and

The density dependence of the shear viscosity of carbon

the GvdW equation of state to complex liquids. It was found that dioxide atT = 260 K andT = 290 K is shown in Figure 9. The

this aim could be adequately achieved if the-sige interaction

model was employed for the interaction potentials of the com-

solid curves are experimental data represented by a fitting
formula of Fenghour et a#? whereas the symbols are theoretical

plex liquids. In this model the nonbonded atoms or groups in values computed from relation 22 appropriately generalized to
complex molecules interact with each other through spherically a rigid two-interaction-site molecular fluid modeling carbon
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al.;”* A, by Vesovic et al? The meanings of the curves are the same

The curves represent the experimental results from ref 69, whereas theys for Figure 11. Reproduced with permission from K. Rah and B. C.

symbols represent the theoretical results of ref 24. Reproduced with
permission from A. Eskandari Nasrabad, R. Laghaei, and B. CJEu (
Phys. Chem. R005 109 8171). Copyright 2005 American Chemical
Society.
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Figure 11. 1 vs p for nitrogen atT = 298 K.The symbols represent
the experimental data®, Younglove!® O, Le Neindre et al! The
solid curve is the theoretical result witf given by eq 34 and the
broken curve is the theoretical result with = 0.56. Reproduced with
permission from K. Rah and B. C. Eu].(Chem. Phys2002 117,
4386). Copyright 2002 American Institute of Physics.
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dioxide. The value of is equal to zero in the supercritical region
and is obtained from the formuta= 4.70 — 8.51p + 3.8602

in the subcritical region. The temperature dependenceg of
predicted by the theory is examined for three isochores in Figure

10. The curves represent experimental data obtained from the

fitting formula of Fenghour et af$ and the symbols are the
theoretical predictions of the theot{The theory presented for
rigid two-interaction-site molecular fluids was also tested for
liquid nitrogen and found to yield excellent results for the density
and temperature dependence in comparison with experiment
For the thermal conductivity of rigid two-interaction-site mo-
lecular fluids, we have available only thermal conductivities
computed with the generalized Eucken relation. In Figure 11,
the thermal conductivity of nitrogen &t= 298 K (> T, = 126.2

K) is shown as a function of density. The solid curve is the
theory with «* given by eq 34 and the broken curve is the
theoretical prediction with* = 0.56. The symbols represent
experimental dat& 7! In Figure 12, the thermal conductivity
of carbon dioxide aff = 470 K (>T, = 304.1 K) is plotted

Eu (. Chem. Phys2002 117, 4386). Copyright 2002 American
Institute of Physics.

against density. The meanings of the curves are the same as for
Figure 11, and the symbols represent experimental@daté&or
these two figures experimental values were useddftecause
of the difficulty of calculating precise values &§ for diatomic
gases. Because good values frare not available in the
literature and the MFV theory foD was not previously
available, the diatomic fluid version of the generalized Eucken
relation, eq 35, was utilized to calculate the thermal conductivity
of diatomic fluids. These comparisons clearly validate not only
the generalized Eucken relation used but also the underlying
relation betweert and the self-diffusion coefficient®, and
D—that is, the density fluctuation theory. Application of the
MFV theory of diffusion and GvdW equation of state for diato-
mic fluids to calculate the thermal conductivity of carbon dioxide
from the generalized density fluctuation formula is recently rfiade
successfully. The results of the study will be reported soon.

If the two interaction sites in the rigid molecules are not
identical, that is, the rigid molecules are not homonuclear, then
& and [y0must be replaced by

2 2
o= @i Q= Z (e (48)
i)=1 i)=1
where
= 2L [Ty Sy 49
wi(eT) =T Jo A grnT)  (49)
GG = 2 T Xwij (50)
AmKeic™ r
i = fo Ay () gy(rnT) - (51)
Akar* '
Toiy = Jo A () girn ) (52)

with m denoting the molecular mass. Generalization of these
relations to more complicated polyatomic liquids, such as
polymeric liquids, is not available at present. They are obviously
a subject that should be studied in the future.

5. Concluding Remarks

The problem of correctly calculating the density and tem-
perature dependence of transport coefficients of dense gases and
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liquids from a molecular interaction model has been a long We are now thus in possession of an approximate, but practical,
standing challenge in statistical mechanics. In recent years, themolecular theory of transport coefficients of dense gases and
challenge has been increasingly met with MDS methods, but liquids, which enables us to compute and comprehend the
MDS methods also have their own limitations. It is not an properties of transport coefficients both for simple fluids and
exaggeration that the aforementioned problem has been one ofor complex fluids such as diatomic fluids. The theory points
the principal motivations for developing the kinetic theory of the way to treat the relations in better approximations and also
dense gases and liquids, and there have been numerou$or more complex fluids, but this task is left for future work.
investigations in various directions made in the past to calculate

transport properti€$ and relation$ 7> between macroscopic Acknowledgment. This work was supported in part by the
properties by using kinetic theory methdd$.Because these  grants from the Natural Sciences and Engineering Research
investigations follow the traditional route in kinetic theory by Council of Canada. | would like to thank Drs. K. Rah, R.
which macroscopic quantities are expressed in many-particle Laghaei, and A. Eskandari Nasrabad for the collaborations on
collision operators of one kind or another, they all require a the works featured in this article and Mazen Al-Ghoul for useful
systematic solution of many particle dynamics for the collision comments.
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